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The U.S. Congress has passed. legslation requiing the EPA to implement screening tests for
identifying endocrine-disrupting chemicals. A series of workshops w snsored by the EPA,
the Chenical Manufacturer Association, and the World Wlddlife Fund; one workshop focused
on screens for chemicals that alter thyroid hormone function and homeostsuis. Participants at
this meeting identified and exmined methods to detect alterations in thyroid hormone synthe-
sis, tansport, and catabolism. In addition, some methods to detect chemicals that bind to the
thyroid hormonie receptors acting as either agonists or antnists were identified. Screening
methods used in mammals as well as other verte were a d. e was a g l
consensus that all known chemicalswhich interfere with thyroid hormmone fuinction and home-
ostasis act by either inhibiting synthesis, altering serum transport proteins, or by increasing
catabolism of thyroid hormones. There are no direct data to support the assertion that certain
environmental chemicals bind and activate the thyroid hormone receptors; firther research is
indicated. In light of this, screeig methods should reflect known me ms of action. Most
metho e , albeit usu fo mechnstic were thouto b 0etoo specific d
therefore would not be applicable for broad-based; s Dete a of serum tid
hormone concentrations following cheniical exposure n rodents wasthought to be a reasobe
initial screen. Concurrent histologic evaluation of the thyroid would strengthen this screen.
Similar methods in teleosts may be useful as screens, but would require indicators of tissue pro-
duction of thyroid hormones. The use of tadpole metamorphosis as a screen may also be useful;
however, this method requires validation and standdization prior to use as a broad-based
screen. Key work developm entl toxict, endocrie disruptors, ne ioral txi,
screens, thyroid hormone, thyroid hormone receptors. Environ Health Psptect 107:407415
(1999). [Online 8 April 1999]
bttp//eIbpnetl.niebs.nib.gov/docs/19991 07p407-415devitolabstract./btl

Endocrine disruption has emerged as an
environmental issue based on the hypothe-
sis that exposure to certain environmental
chemicals alters the endocrine system, and
increases the incidence of endocrine diseases
and disorders and adversely affects develop-
ment in both humans and wildlife (1-3).
Although research evaluating this hypothesis
is ongoing, there are thousands of synthetic
and naturally occurring chemicals that must
be considered. The development of screening
methodology for endocrine-disrupting
chemicals (EDCs) would enable researchers
to narrow the focus of their research efforts
(3). In the United States, screening for EDCs
was recently mandated by congressional
legislation in the Food Quality Protection
Act of 1996 (Public Law 104-170) and the
Safe Drinking Water Act of 1996 (Public
Law 104-182) (4). A series of workshops

sponsored by the Chemical Manufacturers
Association, the EPA, and the World
Wildlife Fund focused on the development
of screens for endocrine-disrupting chemi-
cals for both humans and wildlife (5,6). The
following report is a consensus from the
workshop entitled Screening Methods for
Chemicals That Alter Thyroid Hormone
Action, Function, and Homeostasis, held at
Duke University, Durham, North Carolina,
20-23 June 1997.

The workshop focused on more than
20 assays or test systems that have been
used to examine chemicals which alter syn-
thesis, storage, transport, and catabolism of
thyroxine (T4) and 3,5,3'-triiodothyronine
(T3), assays that examine ligand binding
and activation of the thyroid hormone
receptor, and in vivo assays that examine
the effects of antithyroid agents and

thyromimetics in mammalian and nonmam-
malian wildlife models. The workshop
focused on chemicals that alter thyroid gland
function through pharmacodynamic means
and did not include chemicals that were
directly cytotoxic to the thyroid gland. The
purpose of the workshop was not to recom-
mend a screening battery or to deal with pol-
icy issues pertaining to the use of such
screens; the product of the workshop was
intended to describe and evaluate the meth-
ods that are currently available or could be
developed in the near future for screening
and testing.

Thyroid Function and
Regulation
The thyroid gland produces T4 and T3.
Thyroid hormones (THs) have two pre-
dominant functions. The first is a critical
role in growth and development. One of
the clearest examples of the importance of
THs in growth and development is the
metamorphosis of amphibians, in particular
the metamorphosis of tadpoles into frogs
(7-9). Other examples of the importance of
THs in development are the transformation
of salmon from freshwater-dwelling par to
seawater-dwelling smolts (10,11), flounder
metamorphosis (12), and development of
the central nervous system in humans and
other mammals (13,14). In humans, severe
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hypothyroidism during development
results in cretinism (15,16). The second
major function of THs is to maintain
metabolic homeostasis in mammals (17).

The synthesis and storage of TH pre-
dominately occurs in the thyroid gland and
the synthesis is regulated by the pituitary
hormone, thyroid-stimulating hormone
(TSH). Most of the TH in the thyroid is
present as T4. Although a small proportion
of thyroid-localized TH is T3, most T3
comes from the deiodination of T4 by tissue
specific deiodinases. The processes involved
in the synthesis, storage, release, transport,
and metabolism of THs are complex and
consist of the following: 1) uptake of iodide
ion by the thyroid gland; 2) oxidation of
iodide and the iodination of tyrosine residues
within thyroglobulin; 3) coupling of iodoty-
rosine residues to produce iodothyronines; 4)
proteolysis of thyroglobulin and release ofT4
and T3 into the blood; 5) binding to serum
transport proteins; 6) target tissue synthesis
of T3 from T4; 7) catabolism ofT4 and T3 in
peripheral tissues; and 8) catabolism and bil-
iary elimination of THs in the liver. There
are many examples of pharmaceutical, envi-
ronmental, and naturally occurring chemi-
cals that alter one or more of these processes
in mammals; they have been reviewed by
Hill et al. (18), Atterwill and Aylward (19),
Brucker-Davis (20), and Gaitan (21).

The actions of thyroid hormones are
mediated by their interaction with nuclear
thyroid hormone receptors (TR). There are
four known isoforms of TR that are derived
from two genes-c-erb~A beta (TR betal and
beta2 ) and c-erb-A alpha (TR alpha, and
alpha2) (22). TR alpha2 does not bind TH.
These receptors are part of the steroid recep-
tor super family (23) and are the cellular
homologs of the oncogene c-erb-A. These
nuclear receptors share a common structure
in that they have a ligand-binding domain in
the carboxy-terminal region of the receptor
protein and a DNA-binding domain in the
amino-terminal region (22.23). The TRs can
modulate the expression of thyroid-respon-
sive genes by binding to specific base pair
sequences, known as thyroid hormone
response elements (TREs) in the regulatory
region of these genes. TRs form homodimers
and heterodimers with other nuclear recep-
tors such as the retinoid X receptor (RXR).
In addition, TRs form complexes with a
number of additional modulating and acces-
sory proteins involved in gene transcription.
The affinity of TRs is 10-20 times greater
for T3 than for T4 (24,25).

There are several sites in the synthesis,
transport, and metabolism of THs that can
be altered by xenobiotics. In addition, it is
possible that xenobiotics can alter TH sig-
naling through the TR either by directly

binding to TR or indirectly by altering phos-
phorylation of TR or through interactions
with other accessory proteins. Unlike the
estrogen receptors, there is little evidence of
environmental chemicals binding the TR.
However, the hypothesis that some environ-
mental chemicals may bind to TR, resulting
in toxicologic responses, has not been ade-
quately tested. Because of the complexity of
TH function and regulation, it is unlikely
that a single assay will be available to detect
chemicals that act on any or all of these path-
ways. The utility of a screen depends on its
specificity (the response pathognomonic for
alterations in thyroid function), sensitiviry
(the response of the method to low doses or
to weak-acting chemicals), test duration,
simplicity, and limitations. A number of
assays or experimental systems were evaluat-
ed for their potential use as screens to detect
chemicals that disrupt thyroid hormone
catabolism and signaling. The workshop par-
ticipants acknowledged that several of these
methods could be used as screening tools.

Assays for Thyroid System
Disruption in Mammals
Thyroid hormone concentrations and thy-
roid gland histology. In humans, alterations
in thyroid function can be initially diagnosed
by either physical examination for enlarged
thyroid gland, or by measuring serum hor-
mone concentrations. Serum hormone con-
centrations are such good indicators of thy-
roid function in humans that in the United
States, newborn infants are required to have
blood samples collected for TSH and/or T4
determinations prior to leaving the hospital.
The American Thyroid Association has rec-
ommended determination of serum TSH
and free T4 concentrations (26) as the stan-
dard measure of thyroid function. Total T4
was not recommended as a measure because
false positives can be caused by conditions
and pharmaceutical agents that alter thyrox-
ine-binding globulin (TBG), the main
serum-binding protein in humans. Changes
in TBG concentrations alter total serum T
concentrations, but may not necessarily alter
free T4 concentrations. It is thought that free
T4 is available to enter the cell and that the
concentrations of free T4 are proportional to
the tissue concentrations of T3 and T4. The
American Thyroid Association considers a
diagnosis of primary hypothyroidism con-
firmed if the patient has decreased free T4
serum concentrations accompanied by
increased serum TSH concentrations (26).
Hyperthyroidism in humans is confirmed if
the patient has increased free T4 serum con-
centrations accompanied by suppressed
serum TSH concentrations (26).

The synthesis of THs is tightly regulat-
ed. The THs provide the negative feedback

on pituitary release of TSH. Therefore,
decreases in serum THs due to inhibition
of TH synthesis or transport or induction
of catabolism leads to increased TSH
release from the pituitary. The increased
TSH, along with other growth factors,
leads to hypertrophy and hyperplasia of the
follicular cells of the thyroid, resulting in
an increase in thyroid gland weight with a
concomitant increase in synthesis and
release of THs. If this compensatory mech-
anism is adequate, it can result in the nor-
malization of serum T4 and T, concentra-
tions. Early in a chemical exposure, the
serum concentration of THs will decrease,
but eventually a steady-state is reached.
Therefore, when examining chemical
effects on serum TH concentrations at later
time points in exposures, serum TH conI-
centrations may have returned to normal
because of these compensatory mechanisms
(27,28). When designing experiments to
examine the effects on serum THs, we
must consider this compensatory mecha-
nism and appropriate temporal relation-
ships must be examined.

Another difficulty in determining seruLma
concentrations of THs and TSH is their
responsiveness to stress and time of day of
sampling. For example, transporting ani-
mals from one room to another will
increase TSH and T3 by approximately
two-fold over a 1-hr period, with initial
increases occurring within 5 min (29).
Circadian rhythms of THs occur in rats
with peak serum concentrations occurring
at approximately noon (29). In addition,
there is some evidence of alterations in TH
concentrations associated with stages of the
estrous cycle (29). THs also change with
age and increase strikingly in male rats from
postnatal day 33 to 50 (29). These and sev-
eral other confounding factors are reviewed
by Dohler et al. (29). The determination of
serum concentrations of THs requires care-
ful consideration of these factors, particular-
ly for weakly goitrogenic chemicals. Finally,
detecting small changes in serum TSH and
TH concentrations can be problematic
because of the large interanimal variability,
whereas small changes in TSH (20-30%)
can have significant impact on thyroid
gland function (25,26). Statistically signifi-
cant changes in TSH can be detected if ade-
quate sample sizes are used.

In humans, free T4 and TSH serum
concentrations are the preferred assays to
assess thyroid function. In experimental ani-
mals, researchers have measured both free
and total T4 as well as T and TSH serum
concentrations (27,30-32). Determination
of both free and total THs can provide com-
plementary information that would guide
further testing of a chemical. For example,
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free T4 is an indicator of the amount of hor-
mone available for tissue uptake and for
fetal transfer. It is T4, not T3, that primarily
influences thyroid-dependent neurodevel-
opment. T4 is the major form ofTH that is
taken up by the fetal or neonatal central
nervous system (33).

An area that lacks adequate experimental
data is the exact time course of the compen-
satory mechanism for the different classes of
chemicals which alter serum TH concentra-
tions. Time-course data for inducers of uri-
dine diphosphate glucuronyltransferase
(UDP-GT) indicate that continued dosing
with these chemicals for 7, 14, and 25 days
produces alterations in serum TH concen-
trations (27,30,31,34). Histologic changes
in the thyroid or changes in thyroid weight
occurred following 14 days of dosing
(27,28,30,34). There has been no systemat-
ic attempt to determine the time course of
the compensatory response to decreases in
serum TH concentrations following expo-
sure to different classes of chemicals that
alter serum TH concentrations through
different mechanisms.

The compensatory increases in TSH
result in proliferation of the follicular cells in
the thyroid gland. These changes can be
detected histologically as increased follicular
cell numbers and as increases in thyroid
gland weight (28,35). These histologic
changes appear less sensitive to confounders
described previously and may provide a bet-
ter assessment of thyroid function than
serum hormone concentrations. Similar
dose-response relationships among decreases
in serum hormone concentrations, histolog-
ic changes in the thyroid, and increases in
thyroid weight were observed in rats admin-
istered sulfamethazine for 4 weeks (27).
Furthermore, the use of thyroid weights and
histology may allow for screening chemicals
previously tested in subchronic studies.
Caution is required for studies examined
during the 1970s, however, because follicu-
lar cell hypertrophy indicative ofTSH stim-
ulation was not considered pathologic
change and may not have been reported.
Caution must be used when using histologic
changes as a screen; there are examples of
chemicals that decrease THs without alter-
ing thyroid histology (30).

Section summary. One possible screen
for chemicals that alter thyroid function
could be the measurement of serum TH con-
centrations in experimental animals following
treatment with a test compound. Methods
for determining serum concentrations ofTHs
are readily available from commercial suppli-
ers and these assays have been in use for many
years. Using determination of serum TH
concentrations in animals following chemical
exposure provides assessment of thyroid

function equivalent to those used clinically
in humans. However, because of potential
compensatory mechanisms and the sensitiv-
ity of TH and TSH concentrations to stress
and other factors, determination of serum
TH alone has limitations. Histologic assess-
ment of the thyroid gland should be per-
formed in conjunction with the measure-
ment of serum TH concentrations to pro-
vide a more complete assessment of thyroid
function and TH action (23,35). Future
efforts to determine the most appropriate
time point and exposure regimen for exam-
ining serum TH concentrations are recom-
mended. Again, caution must be used if
thyroid histology alone is used as the mark-
er for chemicals that disrupt THs because
there is evidence of chemicals altering THs
without altering thyroid histology.

Assays for chemicals that alter synthesis,
secretion, transport, and catabolism of thy-
roid hormones. Changes in serum concen-
trations of THs can be caused by chemicals
that inhibit thyroid hormone synthesis,
release, and transport, and by chemicals that
increase metabolism of THs. If a chemical
decreases serum TH concentrations, specific
assays can be used to determine the mecha-
nism by which these hormone concentra-
tions are decreased. These assays may be of
value in screening for chemicals that act
through specific mechanisms. The assays
described examine the synthesis and regula-
tion of serum concentrations ofTHs.

Peroxidase assay. Thyroid peroxidases
(TPOs) are the key enzymes in the synthesis
of THs. There are a number of classes of
synthetic chemicals that inhibit thyroid per-
oxidase, e.g., thionamides such as propyl-
thiouracil, aromatic amines such as sulfathia-
zole, and polyhydric phenols such as resorci-
nol (18-21). In addition, there are a number
of naturally occurring chemicals that inhibit
thyroid peroxidase, such as goitrin, which is
found in turnips and other cruciferous veg-
etables (35), and flavonoids, which are found
in other plant products (36). TPOs have two
functions: first is the iodination of tyrosine
residues on thyroglobulin, and second is the
coupling of specific di- and triiodotyrosyl
residues on thyroglobulin. The iodination
reaction can be readily determined using
bovine serum albumin or tyrosine as sub-
strates (36). In addition, the oxidation of
guaiacol can be used as an indicator of thy-
roid peroxidase activity (327). All chemicals
that inhibit the iodination reaction also
inhibit the coupling reaction (38). The cou-
pling reaction can be assayed using either
human low iodine thyroglobulin, preiodinat-
ed casein, or guaiacol as substrates.

A disadvantage of the TPO assay is that
purified hog TPO is the only form com-
mercially available. Purified human TPO is

not commercially available; however, there
are efforts to develop a recombinant human
TPO. Purified lactoperoxidase (LPO) is
commercially available. There is a good
concordance between inhibitors of TPO
and LPO (32) and LPO has been used as a
model for TPO actions (37). Although
TPO can be purified from experimental
animals, the size of the gland is extremely
small in rodents, and purification of rodent
TPO would be impractical as a source of
enzymes for a widely used screen.

One of the advantages of the TPO assay
is that the sensitivity to chemical inhibition of
thyroid peroxidase from human and experi-
mental animals can be directly examined. In
vitro studies have shown that TPO from
monkeys is more resistant to inhibition by
propylthiouracil (PTU) and sulfamethazine
than is TPO from rodents (359. Comparisons
of the relative sensitivity of TPO across
species would assist in risk assessment for
chemicals that inhibit TPO activity. The iod-
ination and coupling assays are specific for
chemicals that inhibit TH synthesis and are
unlikely to produce false positives. However,
used alone as a screen, these assays have high
potential for false negatives, as chemicals that
alter TH concentrations through other mech-
anisms would not be detected. These assays
have been performed for many years, are well
established in the scientific literature, and
numerous chemicals have been tested using
these assays. Although there are no published
methodologies that can be defined as high
through-put screens, modification of this
assay into a high through-put screen is under
development in several laboratories.

Perchlorate discharge test. Perchlorate
competes with iodide for thyroid uptake and
could also promote the efflux of iodide from
the follicular cells (34,40,41). A perchlorate
discharge test has been used for decades in
both animals and humans to detect iodide
organification defects (34,40-43). In this
assay, animals are exposed to a test chemical
and then administered Na125I followed by
perchlorate. Accumulation of 1251 in the
thyroid is determined before and after
administration of perchlorate. Perchlorate
promotes the release of iodine that has not
been incorporated into thyroglobulin. If a
chemical inhibits or deactivates thyroid per-
oxidase, there would be a brisk decrease in
the accumulation of 1251 in the thyroid
gland. This assay has the potential for pro-
viding mechanistic information on the
actions of chemicals that alter thyroid func-
tion, but it does not necessarily meet the
requirements of a screen.

Thyrotropin-releasing hormone
(TRH) challenge test. This assay examines
the functional integrity of the hypothala-
mus-pituitary-thyroid axis (34). Briefly,
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this assay measures TSH concentrations
before and after challenge with TRH.
Challenge with TRH should increase
serum concentrations of TSH. A hyperre-
active response is observed in the case of
hypothyroidism, occurring at the level of
the thyroid while a decreased response is
observed in hypothyroidism of central ori-
gin. This assay has been used both clinical-
ly (44) and experimentally (34). The TRH
challenge can also help to distinguish
between pituitary and hypothalamic causes
of hypothyroidism (44). Although the
TRH challenge has potential for providing
mechanistic information on the actions of
chemicals that alter thyroid function, the
assay may not be a useful screen because of
the limited number of chemicals which
may act through this mechanism.

Serum protein-binding assays. In mam-
malian systems, the serum-binding proteins
for THs are thyroid-binding globulin
(TBG), transthyretin (TTR), and albumin.
TBG and TTR are specific for THs and T4
has a greater affinity for these serum-binding
proteins than T3 (25). TBG is present in
humans and primates but is not present in
rodents. It appears that TBG is responsible
for the much longer half-life of T4 and T3 in
humans as compared to other species, such
as rodents (25). TTR is present in humans,
rodents, and nonhuman primates. In
humans, TBG is the predominant binding
protein, whereas in rodents TTR is the pre-
dominant carrier ofTHs. TTR is also secret-
ed by the choroid plexus and is present in the
cerebral spinal fluid, suggesting a role in the
transport of T4 into the cerebral spinal fluid
and eventually to periventricular areas of the
brain (45). In addition, TTR transports T4
into the fetus. There are a number of reports
of chemicals that displace T4 from TTR.
The research on environmentally relevant
chemicals has focused mainly on the poly-
halogenated dibenzo-p-dioxins, biphenyls,
and diphenylethers (32,33,46-48). The dis-
placement of T4 from serum binding pro-
teins is hypothesized to increase the dearance
of T4 and decrease serum T4 concentrations.
It has also been suggested that TTR binding
is predictive of interactions with other TH
binding proteins such as the deiodinases and
sulfotransferases as well as chemicals with
potential for high fetal accumulation (33).

These assays have been performed in
several laboratories examining xenobiotics
for several decades (46,49,50). Although
these assays can be modified for high
through-put screening they are specific for
chemicals that compete with THs for serum
binding proteins and will not detect chemi-
cals that act through other mechanisms. In
addition, the use of either TBG or TTR
may not be relevant for nonmammalian

species such as teleosts. However, one of the
strengths of this assay is that it may be pre-
dictive of chemicals that alter fetal concen-
trations ofTH and may provide for a useful
screen in this capacity

Deiodinase assays. In mammals, approxi-
mately 80% of the T4 secreted by the thyroid
gland is deiodinated in target tissues into
either T3, the most active form of the THs,
or reverse T3 (rT3), an inactive iodothyronine
(51). There are several enzymes involved in
the deiodination ofT4, T3, and their metabo-
lites, and the expression of these proteins is
tissue specific. Type I deiodinase catalyzes the
5'-deiodination of T4, rT3, and the sulfated
metabolites ofT4 and T3 (52). Type I deiodi-
nase is sensitive to PTU inhibition and is
found in liver, lung, kidney, pituitary, and
thyroid (53,54). Type II deiodinase is present
in the central nervous system, brown adipose
tissue, anterior pituitary, and the placenta
(55-5X). Type II deiodinase is insensitive to
PTU. In the brain, type II deiodinase con-
verts T4 into T3 and ensures adequate brain
concentrations ofT3 during critical periods of
development (57,58) and during hypothy-
roidism (59). Type III deiodinase is resistant
to PTU and catalyzes the conversion of T3
and T4 into 3,3'-diiodothyronine and rT3,
respectively, in brain, skin, placenta, and fetal
tissues (60-6).

The deiodinase enzymes are critical in
regulation of serum and tissue concentra-
tions of THs. Decreases in serum concen-
trations of T4 alter expression of the tissue
deiodinases. For example, prenatal expo-
sure to Aroclor 1254 increases brain type II
deiodinase in rats with decreased serum T4
(63). There are also tissue-specific and iso-
form-specific changes in deiodinases fol-
lowing thyroidectomy and T4 and T3
replacement in rats (59). Deiodinase assays
have been used for decades to understand
the metabolism of THs. Because the activi-
ty of these enzymes is dependent on the
serum concentrations of these hormones,
these assays would be sensitive toward
chemicals that alter serum TH concentra-
tions. However, alterations in deiodinase
activity also alter serum TH concentra-
tions. The relationship between serum TH
concentrations and deiodinase activity may
decrease the usefulness of this assay as a
screen. If serum TH concentrations are
changed by deiodinase inhibitors, it may be
easier to measure serum TH concentrations
than it is to determine deiodinase activity.
Similar to many of the assays described
above, these assays have greater utility in
understanding the mechanism of action of
a chemical rather than as an initial screen.

Glucuronidation assays. Glucuroni-
dation followed by biliary elimination of T4
is one of the major pathways of deactivation

of T4. In humans there is evidence of sulfa-
tion of T4 as well. In mammals, there are at
least three isoforms of UDP-GT that glu-
curonidate T4 (64). Several classes of chemi-
cals induce UDP-GTs responsible for the
glucuronidation of T4 (17,23,31,32).
Induction of T4 glucuronidation increases
clearance and decreases serum concentra-
tions ofT4. Induction ofT4 glucuronidation
is typically determined in hepatic micro-
somes from animals treated with test chemi-
cals. These assays have been performed for
decades in numerous laboratories through-
out the world. These ex vivo assays require
several days of dosing of the test chemical.
The advantage of this type of assay is that it
is responsive to metabolic activation of the
test chemical because exposure occurs in
vivo. The activity of hepatic microsomal T4
glucuronidation is not as sensitive to stress
and circadian rhythms as is measurements of
serum TH concentrations. The disadvantage
is that these assays are not developed for use
as high through-put screening tests and at

present are laborious. Additionally, although
these assays provide data useful in under-
standing the mechanisms of action, not all
chemicals that effect the thyroid produce
alterations in T4 glucuronidation.

Section summary. The assays described
in this section are specific for particular
mechanisms of action. A combination of
these assays could provide predictive infor-
mation on the availability of intracellular
T concentrations, particularly in the fetus.
This information could be useful in assess-
ing the potential adverse effects of chemi-
cals that disrupt TH homeostasis and tissue
concentrations. These assays have been
used to understand the mechanism of
chemically induced alterations in serum
concentrations ofTH and TSH or changes
in thyroid histopathology (17,23,32,
50,65). If these assays were to be used as
initial screens, all of them would have to be
performed to demonstrate that a chemical
does not alter TH concentrations.

Thyroid hormone receptor binding and
activation. Chemicals can alter thyroid hor-
mone action by binding to TR. There are
several isoforms of the receptors that have tis-
sue specific localization (19). The
structure-activity relationships for binding to
the nuclear thyroid hormone receptor have
been determined using crude nuclear
homogenates (20,21) as well as various TR
isoforms expressed in Escherichia coli or
translated in vitro (66,69). These binding
studies have focused on T3 analogs and not
on environmentally relevant chemicals
(24,25,66-69). Several environmentally rele-
vant classes of chemicals have been proposed
to bind to the nuclear T receptors, such as
the polyhalogenated d[ibenzo-p-dioxin,
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dibenzofurans, biphenyls, and diphenyl
ethers (47,48). However, this hypothesis has
not been adequately tested. At present there
is a lack of evidence that environmentally rel-
evant chemicals bind to TRs, which should
not be confused with the presence of nega-
tive evidence. It should be noted that the
chemicals that have been proposed to bind
to TRs also decrease serum TH concentra-
tions in experimental animals and are known
thyroid hormone disruptors (30,31,70).

In vitro binding assays. In vitro binding
assays can be used as potential screens for
chemicals that bind to TRs. The classical
binding assays have used nuclear extracts
from a variety of tissues and cell lines
expressing TRs (66). More recent studies
have used various TR isoforms expressed in
E. coli or translated in vitro (661-69. These
assays require separating bound from free
hormones using either filtering or chro-
matographic methods. Either separation
method is cumbersome and time consum-
ing. More recent advances have used solid-
state binding assays using specific isoforms
of TRs. The solid-state binding assays
developed allow for high through-put
screening. In the solid-state binding assays,
the TR is coupled to either a multiwell
plate or to beads. Coupling of the receptors
to plates or beads readily enables the separa-
tion of free and bound ligands without the
use of either filtering or chromatographic
methods. Only three of the four TR iso-
forms have ligand-binding capability and
two of these (TR betal and TR beta2) have
identical ligand-binding domains. Binding
assays are expected to have a low rate of
false positives. False negatives can occur if
the chemical requires metabolic activation
or if solubility problems are encountered.

Transfection and transformation assays.
One of the problems with TR binding assays
is that they cannot differentiate between ago-
nists and antagonists. Alternative assays that
would examine receptor binding and dif-
ferentiate between agonists and antagonists
are systems in which a specific TR is trans-
fected into a mammalian cell line along
with a reporter gene, typically coding for
luciferase, beta-galactosidase, or choline
acetyl transferase (70). Transformed yeast
cell lines containing TR gene constructs
have also been developed. In these systems,
T3 or other ligands to TR bind and activate
the receptor, which then interacts with spe-
cific response elements upstream from the
reporter gene and enhances its transcription.
The increased transcription is determined by
increased enzymatic activity of the reporter
gene product, e.g., luciferase. Chemicals can
be tested alone or in combination with T3 to
determine agonist or antagonist properties.
Similar systems have been used to examine

the interactions of TR with different
response elements (71), different cofactors
(72), and with phosphorylation ofTR (73).
Although these systems have not been used
for screening for environmental chemicals
that are TR ligands, similar screens have
been developed for estrogens and androgen
agonists and antagonists (4).

Transformed yeast cell and transfected
mammalian cell lines have been used to
study several of the steroid hormone recep-
tor super family members. There are differ-
ences among the assays used for estrogen,
androgen, and thyroid hormone receptors.
There are currently only two recognized
mammalian estrogen receptors and a single
androgen receptor, in contrast to the four
isoforms of TR. TRs act predominately as
heterodimers with RXR (74-76), whereas
the estrogen and androgen receptors are
active as homodimers. Both TR and the
peroxisome proliferator-activated receptor
(PPAR) form heterodimers with RXR and
agonists of PPAR can alter TR mediated
gene expression by binding and competing
for RXR (71). Hence, chemicals might
alter TR activation by altering RXR or
PPAR pathways. TR activation is also regu-
lated by phosphorylation (72,73), similar
to the estrogen and androgen receptors. In
designing a screen for TR ligands, chemi-
cals may have different effects depending
on the TR transfected, the response ele-
ment used, and their interactions with
PPAR and RXR. Because of the complexity
of this system, several screens would have
to be incorporated to account for the mul-
tiplicity of interactions of the different TR
isoforms. An advantage of the transfection
assays is that chemicals that alter TR acti-
vation through mechanisms not involving
direct binding to TR would be detected in
these assays. Another advantage of these
assays is that they are readily adapted to
high through-put screens.

A major disadvantage of these in vitro
screens is the lack of metabolic capability
of the cells or assays. It is possible that
the metabolites of some chemicals would
produce these effects and not the parent
compound. The cell lines typically used in
these assays have limited ability to metabo-
lize the test compounds, particularly persis-
tent organic pollutants such as the poly-
chlorinated biphenyls (PCBs) and the diox-
ins. The transformation assays in yeast have
additional drawbacks in that for many
chemicals entry into the yeast is limited
because of the cell wall.

GH3 cell assay for thyroid hormone
action. An in vitro bioassay has been
designed that can detect TR agonists (77).
This assay uses the rat pituitary tumor cell
line GHM . The growth of these cells are

dependent on TH when plated at low-den-
sity in serum-free medium (77). In addition,
the morphology of these cells is also altered
by THs in a dose-dependent manner. One
form of the assay measures cell proliferation
in response to TR agonists by the determi-
nation of the transformation of monotetra-
zolium (MTT) tetraxolium salt into MTT
fromazan by mitochondrial enzymes (77).
This assay is performed on microwell plates
and can be considered a high through-put
screen. Although this assay is relatively new,
it has the potential to provide information
as a screen for chemicals that activate TR.

Section summary. Although there are
no known environmental chemicals that act
as either TR agonists or antagonists, there
are dear examples of environmental chemi-
cals, both synthetic and naturally occurring,
that bind to the estrogen receptor and act as
agonists, antagonists, or partial agonists (3).
In addition, there are several chemicals
found in the environment that act as antian-
drogens (78). Although the hypothesis that
environmental chemicals bind TR has been
proposed, it has not been adequately tested.
Recent methodological developments result-
ing in high through-put assays could be per-
formed on a limited number of chemicals to
test this hypothesis. However, broad-based
screening should reflect known biologic
mechanisms and at this time there is no
evidence of any xenobiotic binding to the
thyroid receptor.

Developmental assays. The role of THs
in developing humans and other animals is
well documented. Hypothyroidism during
development leads to permanent alterations
in a number of organ systems including the
central nervous system and the male repro-
ductive system. The sensitivity of develop-
ing animals may provide models for testing
and screening chemicals that alter thyroid
hormone catabolism or interfere with thy-
roid hormone signaling.

Neurodevelopmental assays. The
development of the central nervous system
is dependent on thyroid hormones for con-
trol of neuronal proliferation, initiation of
neuronal differentiation, formation and
development of neuronal processes, and
timely myelinization of the neurons (14). In
humans, hypothyroidism induced by iodine
deficiency results in neurologic endemic
cretinism. This disorder is characterized by
a high incidence of severe mental retarda-
tion, deaf-mutism, and problems with gross
and fine motor coordination. Congenital
hypothyroidism also results in cognitive
impairment and growth delay. In addition,
maternal hypothyroidism during pregnancy
results in an increased incidence of neuro-
logic and behavioral disorders in the off-
spring. In rodents maternal hypothyroidism
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produces a variety of behavioral and mor-
phologic changes in the brain similar to
those observed in humans.

Morphologic and biochemical assays in
developing brains. Morphologic and bio-
chemical changes in the developing brain
have been observed in animals exposed to
agents that decrease thyroid hormone con-
centrations, such as PTU. For example,
decreased brain weight occurs in rodents,
with marked decreases in serum THs during
perinatal development (79,80). Perinatal
hypothyroidism also results in morphologic
abnormalities in the organ of Corti (81-83).
Biochemical changes observed in hypothy-
roid animals include decreases in myelin
basic protein and alterations in neurotrans-
mitter concentrations, among others (14).
The morphologic and biochemical changes
induced by hypothyroidism are detectable
when maternal, fetal, or neonatal serum T4
concentrations are significantly decreased.

Behavioral testing. Numerous behav-
ioral assays have examined the effects of
goitrogens or iodine deficiency in develop-
ing mammals. Hypothyroidism during
development delays eye opening (84), reflex
development (84) and weaning (85) in
rodents. Decreased motor activity has also
been demonstrated following developmen-
tal hypothyroidism (86). Exposure to PTU
in drinking water from gestational day 18
to postnatal day 25 produces delays in eye
opening, reduced body weights, decreased
or delayed preweaning motor activity, and
increased postweaning motor activity (87).
Similar to humans, developmental hypo-
thyroidism in rodents permanently alters
auditory function (87,88). These behavioral
assays can be used to detect hypothy-
roidism; however, most of these behavioral
changes may not be specific to hypothy-
roidism and have the potential for a high
rate of false negatives. More importantly,
these behavioral changes occur only when
there are significant decreases in serum T4
concentrations (87,88).

Male reproductive system development.
Testes weight and sperm counts. Hypo-
thyroidism in humans during the juvenile
stage is associated with megalotestis and high
sperm counts. Maternal iodine deficiency or
repeated exposure to goitrogens such as PTU
or PCBs during lactation increases testes
weight and sperm counts in rats when the
animals reach maturity (89-91). Similar
findings have been reported in mice, ham-
sters, and roosters. Conversely, neonatal
hyperthyroidism results in decreased testes
weights and lower sperm counts (92).
Hence, testes weights and sperm counts can
be used as measures of thyroid status in
developing animals. An advantage of these
measurements is their ease. Testes weights

are simple to determine and methods to
measure sperm counts have been developed
over decades and are readily performed. The
disadvantage of this assay is that it requires
repeated dosing of the animals during lacta-
tion and a waiting period of several weeks
prior to measuring the end points. In
response to a thyrotoxic agent, these respons-
es are observed only when there are signifi-
cant decreases in serum TH concentrations
(89-91). Additionally, testes weights and
sperm counts can also be affected by other
types of agents, such as estrogenic antiandro-
genic compounds, as well as chemicals that
have a direct effect on the testis.

Section summary. Hypothyroidism
during development produces profound
permanent change in the auditory system,
central nervous system, and the male repro-
ductive system. A number of assays or test
systems can be used to detect chemicals
that produce hypothyroidism. However,
most of these assays or test systems are time
consuming and not necessarily specific for
hypothyroidism. In addition, pronounced
decreases in serum T4 concentrations are
required to detect the behavioral or mor-
phologic changes. Alterations in serum
THs can be detected at lower dose levels
than those required to detect the behavioral
and morphologic changes in these systems.
Because of the greater sensitivity and sim-
plicity, determination of serum TH con-
centrations is recommended instead of
these developmental assays. It should be
remembered that using adult, pubescent, or
prepubescent animals may be qualitatively
predictive of fetal response, whereas it may
not be quantitatively predictive of dose or
response in fetal tissue.

Screeningfor chemicals that alter thy-
roidfiuntion and homeostasis in nonmam-
malian wildlife. Similar to mammalian sys-
tems, the thyroid and THs are critical in the
development of amphibians, birds, fish, and
reptiles (7-9). Although there are similarities
in the basic structure and function of the
thyroid system among vertebrate species
(93,94), there are also differences that must
be considered when recommending tests of
thyroid function. TRs have been doned in
one species of teleosts (95), in two species of
frogs (96), and in chickens (19). TRs from
all species examined show similar structure-
binding activity relationships with regard to
T4, T3, and their analogs (97-100).
However, there are some differences in the
regulation of THs by nonmammalian
wildlife. In teleosts a negligible amount of
T3 is synthesized and secreted (93) from the
thyroid gland. The plasma proteins involved
in transport ofTHs in teleosts bind T3 pref-
erentially in contrast to the mammalian
plasma proteins that bind T4 preferentially

(93). The serum TH binding proteins in
teleosts do not appear to be structurally
related to TTR (101). Although the serum-
binding protein found in the bullfrog tad-
pole is a homolog of TTR, it preferentially
binds T3 (102). In addition, there are sea-
sonal changes in THs in teleosts that are not
apparent in mammalian systems.

One important difference among mam-
mals, fish, and amphibians is the hypothala-
mic control of TSH from the pituitary. In
teleosts, the hypothalamus negatively con-
trols the release of TSH, whereas in mam-
mals it is positively controlled. In develop-
ing tadpoles, the hypothalamus positively
controls TSH release via corticotropin-
releasing factor rather than TRH. TRH in
tadpoles and adult frogs appears to play a
role in osmoregulation by regulating pro-
lactin release from the pituitary (103). This
suggests that assays routinely used in
rodents, such as the TRH challenge and the
TTR binding assays, may not be uniformly
applicable to nonmammalian species. Some
of the assays used to assess thyroid function
in rodents must be viewed cautiously when
applied to nonmammalian systems.

Despite some of the species differences
in TH regulation, there is a concordance
between mammals and fish in response to
many chemicals that alter TH function or
homeostasis (93). An example of chemicals
that demonstrate significant differences in
species sensitivity are the mono-ortho substi-
tuted PCBs, which are efficacious in
decreasing plasma or serum T4 in rodents
but have little effects on plasma TH in fish.
Many of the assays described previously
could be used to examine chemical effects
on TH function and homeostasis in fish and
other wildlife if appropriately adapted for
the species of interest. Alterations in thyroid
function can be examined histologically in
teleosts (93), similar to the mammalian sys-
tem. However, it should be noted that the
thyroid gland in most teleosts is not encap-
sulated and consists of diffuise scattered folli-
cles, making metrics like thyroid weights
more difficult to obtain. This anatomical
difference also makes histologic evaluation
difficult, particularly for weak goitrogens. In
fish, there appears to be considerable control
of the thyroid system via the mechanisms
controlling peripheral T3 production (93).
Consequently, measures of deiodinase activ-
ities in conjunction with peripheral T4
assessments are required to thoroughly eval-
uate T3 availability to target tissues.

Tadpole metamorphosis assay. The
development of tadpoles into frogs occurs
in multiple stages, with different organ sys-
tems developing at different times. THs are
required for metamorphosis (7-9!) but TH
action is modulated by other hormones
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(104,105). In conjunction with T3, corticos-
terone accelerates metamorphosis at later
stages of development (106). Circulating pro-
lactin concentrations increase toward the end
of metamorphosis (7) and prolactin down
regulates TR expression, apparently modulat-
ing the stimulatory action of T (107).
Chemicals that alter tadpole deve?opment
may not interact directly with TRs or directly
alter TH concentrations, but may act indi-
rectly by altering other endocrine pathways.
In addition, chemicals that alter calcium
homeostasis, such as calmodulin antagonists,
also alter metamorphosis (108). The tadpole
metamorphosis assay may be a valuable tool
for screening chemicals that alter TH signal-
ing pathways either directly or indirectly.

One disadvantage of the tadpole assay is
that it has not been validated and several
questions need to be answered prior to use
of this assay as a screen. There are a number
of different classes of chemicals that alter
TH synthesis, transport, and catabolism.
Few of these chemicals have been examined
in this assay. It is not clear whether the tad-
pole will respond to different inducers of
UDP-GT in a manner similar to mammals
or even to other aquatic species. Clearly this
assay requires further validation and stan-
dardization prior to use as a screen.

Section summary. THs are critical in
development for nonmammalian wildlife
and there are examples of chemicals that
alter THs and produce alterations in non-
mammalian wildlife. Many of the assays
discussed for mammalian system can be
used for nonmammals provided these
assays are sufficiently modified to examine
the nonmammalian species of interest. The
tadpole metamorphosis assay is potentially
useful as a screen but requires further vali-
dation and standardization.

Conclusion
The workshop participants attempted to
address the merits and limitations of
numerous assays available as potential
screening methods for chemicals that alter
thyroid hormone action, function, or
homeostasis. Not every existing assay was
examined because of limitations of time and
expertise. Some combinations of the assays
evaluated may be useful as screens.
Chemicals appear to alter the thyroid sys-
tem by either inhibiting synthesis of THs,
altering serum binding to transport pro-
teins, or by increasing TH metabolism. Few
if any environmentally relevant chemicals
have been demonstrated to act as either TR
agonists or antagonists. The development
and implementation of screens should
reflect the known mechanism of action.

Screening for chemicals using either thy-
roid histology or serum TH concentrations

in mammals should provide tests that would
produce few false negatives or false positives.
Subchronic studies in mammals examining
thyroid histology provide the most useful
measure of a chemical's thyrotoxic potency
and efficacy. However, these assays are not
necessarily screens, and they require dosing
animals for at least 2-6 weeks to observe
consistent responses. Determination of
serum TH concentrations in short-term
tests may provide an adequate initial screen
for chemicals in mammals. The exact dosing
regimen and time course for these responses
have not been adequately examined in the
published literature. Determination of
serum TH concentrations and thyroid his-
tology may also be of value in teleosts; how-
ever, indices of peripheral T3 production are
also required to evaluate thyroid status and
should be included when determining the
effects of chemicals on teleosts.
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